

Polymer 43 (2002) 6037-6047

www.elsevier.com/locate/polymer

Effect of amino acid on forming residue-residue contacts in proteins

Zhouting Jiang^a, Linxi Zhang^{a,*}, Jin Chen^a, Agen Xia^a, Delu Zhao^b

^aDepartment of Physics, Zhejiang University, Hangzhou 310028, People's Republic of China

^bPolymer Physics Laboratory, Center of Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China

Received 14 February 2002; received in revised form 15 July 2002; accepted 15 July 2002

Abstract

The long-range contacts contribute more function to the protein folding and play an active role in the stability of protein molecules. In this paper, we calculated the number of short- and long-range contacts from 278 globular proteins and analyzed the effects of amino acids on the long-range contacts by contrasting the average number of the long-range contacts between different amino acid residues in the protein sample. The amino acids of Leu, Val, Ile, Met, Phe, Tyr, Cys, and Trp are easy to form the long-range contacts, and the average number of long-range contacts per residue is 5.008 when $R_c = 0.80$ nm. Here R_c is the minimum distance between two C^{α} atoms of residues. The amino acids of Glu, Gln, Asp, Asn, Lys, Ser, Arg, and Pro are difficult to form the long-range contacts, and the average number of long-range contacts per residue is only 3.232 when $R_c = 0.80$ nm. However, the effect of amino acid on the short-range contact is negligible, and the average number of short-range contacts per residue ranges from 3.649 to 3.721 when $R_c = 0.80$ nm. We also find that the highest preference is observed for Cys-Cys contact, and the lowest preference is Gln-His contact. The average number of contacts depends on R_c , and two cases of $R_c = 0.65$ and 0.80 nm are discussed. The average distance of the residue –residue contacts is also concluded. Through these calculations, we can discuss how the amino acids affect the protein folding and how the proteins achieve the stability conformations. © 2002 Published by Elsevier Science Ltd.

Keywords: Amino acid; Short-range and long-range contacts; Protein folding

1. Introduction

Proteins are heterogeneous chain molecules composed of sequences of amino acids. The understanding of protein folding is a long-standing goal in structural biology. There are 20 different amino acids in protein molecules, and their effects may be different in the folding. In the protein folding the amino acid residue-residue contacts play an important role. The folding of a protein chain into a compact, unique three dimension structure is directed and stabilized by intra molecular interactions between the constituent amino acid residues along the chain. And it is useful to predict the threedimensional structure of a globular protein from the knowledge of its amino acid sequence. During the last two decades, many biologists, chemists, and physicists have attempted to identify and simulate the mechanisms through which a given sequence reaches its stable which has the lowest free energy, native conformation (protein folding) [1-3]. The complexity of the problem is enormous because

* Corresponding author. *E-mail address:* zhanglx@mail.hz.zj.cn (L. Zhang).

the calculation is not yet practical using current force-field algorithms and the computer time required is far too great.

Experiments and theoretical studies have shown that the amino acids are subdivided into two kinds of residues: hydrophobic (H) and polar (P) [4-6]. There is an effective attraction between hydrophobic amino acids that arises from their aversion to the solvent and lead to such amino acids forming the core in the protein native state. In the HP model, the hydrophobic energy, or the solvent effects, is a major contributor to the energetics of protein folding. A favorable contact energy, $\varepsilon_{\rm HH} = -1$ (or $-\varepsilon_0$) is assigned to two nonconsecutive residues which are one lattice spacing apart, while the other interactions, ε_{PH} , ε_{HP} , ε_{PP} are set equal to zero [4-7]. This simplified model is required for the study of the protein folding process and simplification can be made to both geometry and potential functions. In the recent years, protein engineering experiments also suggest that maybe not two but certainly several amino acids can be effectively substituted for the 20 amino acids and the helical bundles can be built with the set of three amino acids: hydrophobic Leucine (L), polar E (Glutamine), and polar K (Lysine) [8]. Comply with this pattern, Miyazawa–Jernigan

Table 1 (continued)

PDB code

Number

 $N_{\rm S}^{\ b}$

 $N_{\rm S}^{\rm a}$

Ν

 $N_{\rm L}^{\rm a}$

 $N_{\rm L}{}^{\rm b}$

Number of short-range and long-range contacts in different globular proteins. $N_{\rm S}$ (or $N_{\rm L}$) represents number of short (or long)-range contacts, and N is the number of amino acid residues

							00	ICPC-K	162	420
umber	PDB code	Ν	$N_{\rm S}^{\rm a}$	$N_{\rm L}{}^{\rm a}$	$N_{\rm S}^{\rm b}$	$N_{\rm L}^{\rm b}$	61	1CPC-L	172	438
							62	1ECD	136	350
	1ABA	87	166	138	128	66	63	1ECO	136	352
	1BBL	51	76	24	55	9	64	1FCS	153	40
	1BOV-A	69	106	157	66	86	65	1FHA	183	43
	1BOV-B	69	105	152	70	90	66	1FKF	107	16
	1BOV-C	69	104	148	68	84	67	1FX1	148	28
	1BOV-D	69	104	154	67	88	68	1GKY	187	38
	1BOV-E	69	106	154	69	89	69	1HBG	147	38
	1CDT-A	60	83	145	39	84	70	1155-A	103	20
	1CDT-B	60	84	145	42	87	71	1I55-B	103	20
1	1CRN	46	91	67	69	38	72	1IFA	158	37
	1CIF	74	140	117	120	61	73	1LE4	144	38
	100	93	170	119	126	70	74	1LH1	153	39
	1DUR	55	86	100	59	49	75	1LTS-D	103	17
	1FIA-A	98	194	28	172	16	76	1LTS-E	103	17
	1FIA-B	98	194	27	175	14	77	1LTS-F	103	17
	1FXD	58	101	103	75	47	78	1LTS-G	103	17
	1GCN	29	69	105	, <i>5</i> 54	0	79	1LTS-H	103	17
	1HIP	85	140	163	91	76	80	1LTS-A	185	32
	1HIV-A	99	132	203	69	120	81	1LZ1	130	26
	1HIV-B	99	132	198	71	116	82	1MBC	153	40
	1HOE	74	96	186	47	117	83	1MBD	153	400
	1LMB-3	92	214	85	187	33	84	1MBS	153	39
	1LMR-4	92	214	05 77	192	33	85	1MSB-A	115	18
	1LTS-C	41	101	2	03	0	86	1MSB-B	115	18
	1NRC-A	95	1/18	153	110	83	87	10FV	169	33
	1NRC-R	95	140	155	104	80	88	10VB	159	30
	1DDT	36	75	24	60	7	89	1P12-E	198	28
	1RDG	53	75 77	01	60	50	90	1PAE	123	18
	1TEN	00	113	214	46	140	91	1PP2-R	122	25
	ITCS I	56	02 02	02	40	56	92	1PP2-L	122	25
	1TDA I	58	88	127	40 58	30 71	93	1Q21	171	31
	11FA-I 1UTC	30 70	00 170	127	159	14	94	1RBP	182	26
		70	1/9	43	138	14	95	1REI-A	107	14
	2MLT-A	27	69	5	64	1	96	1REI-B	107	14
	2ML1-D	56	00	04	62	40	97	1RNH	155	274
	2000	30	92	94 242	05	49	98	1SRX	108	219
	2PC I	42	158	242	70	142	99	1TFG	112	17
	2PDE	43	152	88 169	38	43	100	1TIE	172	22
	20AK-A	90 04	155	108	97	99 100	101	1TLK	154	13
	25AK-B	90	104	1/0	101	100	102	1YCC	107	21
	201NJ 2EDV	60	104	1.34	22	90	103	256B-A	106	27
	JEDA 311 P	02 72	/5 117	140	33 70	68 51	104	256B-B	106	27
		12	11/	90 7	18	21	105	2ALP	198	28
	JING D	21	44 50	1	52	2	106	2AVI-A	128	15
	SING C	3U 21	33 44	/	44 24	2 5	107	2AVI-B	128	15
	JING-U	21	44 51	9	30	2	108	2AZA-A	129	20
	эш л 5-D 451C	3U 00	54 170	8 111	40	2	109	2AZA-B	129	20
	431C	82	1/9	111	144	34 27	110	2C2C	112	23
	4IUB	/0	1/8	/0	143	27	111	2CCY-A	128	32
	JKXN	54	80	89	58	49	112	2CCY-B	128	32
	1A45	1/3	239	481	108	2/4	113	2CDV	107	19
	IACX	108	141	268	61	145	114	2023	118	21
	IBP2	123	267	180	216	75	115	2ECR	173	32
	ICCR	122	219	194	178	89	116	2FOX	138	52 27
	1CD8	114	150	258	83	147	117	2GME-A	120	27
	1CID	177	232	469	112	267	118	2GME-R	127	23.
	1COB-A	151	216	457	124	273	110	2000-D	1/1	24
	1COB-B	151	213	453	117	276	120	2000-A 2000 B	141	55 27
	1CPC-A	162	420	172	369	67	120	200-D	140	5/
							1 / 1	/11 /2		

Table 1

					1- h	h. h						1- h	h
lumber	PDB code	Ν	$N_{\rm S}^{\rm a}$	$N_{\rm L}{}^{\rm a}$	N _S ^b	NL	Number	PDB code	Ν	$N_{\rm S}^{\rm a}$	$N_{\rm L}^{\rm a}$	N _S ^b	NL
23	2LAL-C	181	238	340	125	201	186	1MAM-L	214	297	517	154	309
24	2LHB	149	368	155	324	59	187	1MAM-H	217	291	510	137	303
25	2LTN-A	181	241	346	126	201	188	1PPF-E	218	320	583	176	317
26	2LTN-B	181	241	341	124	202	189	1PPN	212	374	538	258	257
27	2LYZ	129	265	236	207	104	190	1PRC-L	273	659	338	560	134
28	2LZM	164	385	205	332	85	191	1PRC-H	259	451	406	304	213
29	2MHB-A	141	359	153	335	45	192	IRHD	293	561	585	379	270
30 21	2MHB-B	146	370	1/1	338	50	193	IRVE-A	245	441	441	302	217
31	2MHR	118	292	97	266	28	194	IKVE-B	245	435	435	311	212
32 22	2MS2-A 2MS2 P	129	205	212	137	142	195	11GS-Z 1TIM A	229	544 505	010	205	320
33	2MS2-D	129	212	215	147	1/4	190	1TIM B	247	500	405	390	221
25	20132-C	129	158	215	85	141	197		247	336	606	202	211
86	21 AD-A 2PAB-B	127	157	202	83	158	190	$1TRE_{\Delta}$	225	537	505	426	225
37	21 AD-D 2RHF	114	159	294	78	150	200	1TRE-R	255	528	494	420	223
38	2RSP-A	124	150	239	78	137	200	11ILA	289	523	550	370	251
39	2RSP-B	124	150	229	79	132	202	2ACT	220	384	551	262	259
40	2SNS	149	263	300	181	144	203	2AYH	214	285	604	137	355
41	2SNV	151	217	370	124	220	204	2CAB	261	397	682	246	377
12	2SOD-O	152	211	444	108	268	205	2CNA	237	324	685	142	376
43	2SOD-Y	152	210	449	107	275	206	2DRI	271	556	651	443	326
44	2SOD-B	152	215	458	113	275	207	2GCH	245	355	644	214	346
45	2SOD-G	152	213	454	113	268	208	2PTC-E	223	337	602	201	333
46	2STV	195	265	484	135	284	209	2SBT	275	496	784	336	363
47	2TRX-A	108	209	175	156	88	210	2TSC-A	264	484	499	353	245
48	2TRX-B	108	209	178	149	99	211	2TSC-B	264	480	501	353	251
49	2WRP-R	107	267	39	239	9	212	3CNA	237	320	668	150	381
50	3ADK	195	438	270	365	112	213	3EST	240	365	652	218	362
51	3CHY	128	259	225	212	123	214	3PGM	241	457	466	317	216
52	3DFR	162	263	315	175	186	215	4BLM-A	265	517	530	402	248
53	3LYZ	129	264	236	208	100	216	4BLM-B	265	520	538	397	251
54	3RN3	124	207	260	139	148	217	4CHA-A	245	358	668	215	347
55	3SGB-E	185	266	567	143	328	218	4CHA-B	245	355	657	213	339
6	3SSI	113	176	228	112	138	219	4CLA	213	385	365	278	180
7	4CPV	109	246	139	204	50	220	4FAB-L	219	308	537	152	307
i8	4DFR-A	159	255	324	165	179	221	4FAB-H	216	293	549	138	325
,9 ()	4DFR-B	159	258	323	164	183	222	SPTP	223	332	599	194	327
50	4MBN	153	402	137	362	46	223	5TIM-A	250	507	469	394	216
)] ()	5CPV	109	250	138	205	51	224	STIM-B	250	212	480	399	221
52	SED1	104	205	215	109	02	223	9PAP 1ADE	212	507 621	551 662	230	244
55 54	5P21	100	303	215	130	98	220		363	744	707	500	321
5	7054	124	204	250	135	145	227	1ALD	303	785	303	592 660	121
56	8ATC-B	153	231	289	144	164	220	1AVH-R	320	783	300	660	121
50 57	8ATC-D	153	234	296	143	164	230	1CD1-A	315	469	502	322	290
58	9RNT	104	170	196	110	106	231	1CD1-C	315	471	509	320	288
69	9WGA-A	171	301	437	189	256	232	1ETU	394	359	340	277	142
70	9WGA-B	171	303	427	192	238	233	1GOX	369	707	702	528	324
71	1BKS	268	560	473	465	221	234	1IPD	345	719	768	557	347
72	1CA2	259	386	652	232	363	235	1MNS	357	707	800	556	397
73	1COL-A	204	511	264	461	85	236	1NSB-A	390	513	1198	243	678
74	1COL-B	204	508	268	457	85	237	1NSB-B	390	515	1196	250	678
75	1CSE-E	274	502	814	367	404	238	1PAX	361	668	669	502	332
76	1DHR	241	460	494	360	236	239	1PFK-A	320	658	687	494	325
77	1EAF	243	461	433	360	215	240	1PFK-B	320	658	680	497	321
78	1EST	240	372	657	223	368	241	1PHH	394	771	807	537	408
79	1FC1-A	224	293	475	155	280	242	1PRC-C	336	698	481	542	189
80	1FC1-B	224	295	469	149	279	243	1PRC-M	323	745	383	639	181
31	1HIL-A	217	298	525	156	322	244	1SBP	310	655	606	514	297
2	1HIL-B	220	291	528	157	307	245	2ACH-A	360	620	690	442	370
.3	1HIL-C	217	297	515	157	322	246	2APR	325	489	880	287	491
34	1HIL-D	220	288	528	150	307	247	2ER7-E	330	491	890	288	513
85	1HSB-A	270	480	538	321	318					(continu	ed on nex	t page)
184 185	1HIL-D 1HSB-A	220 270	288 480	528 538	150 321	307 318	247	2ER7-E	330	491	890 (continu	ed i	288 on nex

6040

Table 1 (co	ontinued)					
Number	PDB code	Ν	$N_{\rm S}^{\rm a}$	$N_{\rm L}{}^{\rm a}$	$N_{\rm S}^{\rm b}$	$N_{\rm L}^{\rm b}$
248	2GBP	309	641	643	508	316
249	2HAD	310	633	610	479	270
250	2LIV	344	710	731	556	343
251	2PIA	321	524	697	348	375
252	2POR	301	420	868	193	526
253	3APP	323	488	875	285	483
254	3CPA	307	605	693	466	331
255	3LDH	330	659	624	465	284
256	4CPPA	307	611	691	459	329
257	4PFK	319	661	736	504	346
258	4TLN	316	644	742	507	376
259	4TMS	316	618	541	481	265
260	5ABP	306	630	654	494	316
261	5ADH	374	674	962	447	473
262	5CPA	307	604	688	473	328
263	6LDH	330	669	610	507	299
264	6XIA	387	829	643	669	289
265	8ADH	374	669	965	457	464
266	8TLN-E	316	643	724	501	674
267	1GLA-G	501	944	1172	703	581
268	2AAA	484	883	1066	641	510
269	2BPA-1	426	704	842	459	450
270	2CTS	437	1026	622	865	226
271	2PGD	482	1062	820	881	368
272	2TAA-A	478	861	1057	579	487
273	2TS1	419	700	493	557	202
274	3PGK	416	807	908	697	383
275	4ENL	436	891	1023	656	482
276	4ICD	416	828	895	656	416
277	8CAT-A	506	929	877	672	431
278	8CAT-B	506	924	875	661	428

^a The case of $R_c = 0.80$ nm.

^b The case of $R_c = 0.65$ nm.

(MJ) modified the interaction matrix [9]. They put forward that there are three types of amino acids named hydrophobic residues (H) consisting of Leu, Phe, Met, Ile, Trp, Val, Cys, and Tyr, neutral residues (N) consisting of His, Ala, Gly, and Thr, and hydrophilic residues (P) consisting Lys, Asp, Asn, Glu, Gln, Ser, Pro, and Arg [10]. As a matter of fact, the two kinds of residues (hydrophobic and polar) in standard HP lattice model are replaced by three kinds of residues (hydrophobic, neutral, and hydrophilic) in the modified HP lattice model [11]. In this modified model, the interactions between those residue pairs may be more close to the interactions in the real proteins. On the other hand, there are different roles in forming contacts for different amino acids. Hydrophobic amino acid residues have a strong attractive in forming a long-range contact. In the meantime, there may be no difference for hydrophobic and hydrophilic amino acid residues in forming short-range contacts. In this paper, we will discuss the effects of amino acid residues on forming short-range and long-range contacts through calculating the number of the short-range and long-range residue-residue contacts. Our aim is to study the important role of amino acids residue-residue contacts in the protein folding.

2. Method of the calculation

We study 278 globular protein structures. A database of these proteins is derived from the information about their three-dimensional structures available in the literature. We use a set of representative globular proteins obtained from http://www.rcsb.org/. The coordinates of all the globular protein structures are obtained from the protein date bank (PDB). The PDB codes for all the proteins used in the present study along with the protein length and the number of the contacts are given in Table 1.

Each residue in a protein molecule is represented by the center of its side chain atom positions, and the position of C^{α} atom is used for glycine residue. Residues whose centers are closer than R_c are defined to be in contact. This kind of simple method to evaluate the number of residue-residue contacts in proteins has often been used [9-14]. The limiting values $R_c = 0.65$ and 0.80 nm for contacts are chosen. Using the C^{α} coordinates, a sphere of radius R_{c} is fixed around each residue, and the composition of surrounding residues associated with all the residues is calculated. It has been shown that the influence of each residue over the surrounding medium extends effectively only up to 0.80 nm [15–17]. The limit of 0.80 nm is sufficient to characterize the hydrophobic behavior of amino acid residues [16] and to accommodate both the local and non-local interactions [18]. This limit also has been used to understand the folding rate of protein [19], protein stability upon mutations [20] and thermal stability of proteins [21]. In the previous papers, $R_c = 0.65$ nm is also chosen in estimation of effective interresidue contact energies by Miyazawa and Jernigan [9–11].

For a given residue, the composition of surrounding residues is analyzed in terms of the location at the sequence level, and the contributions from $\leq \pm 4$ residues are treated as a short-range contact, and $> \pm 4$ residues as long-range contact [21–23], which is the same as the short-range and the long-range interactions in the rotational-isomeric-state model [24].

A contact consists of two residues A and B. Sometime, residue A and residue B may be the same. If residue A and residue B have the high tendency of appearance in the proteins, there maybe a large probability of forming contacts. Here the preference of all the 20 amino acid residues to form contacts is computed. The average number P_{A-B} of residue–residue contacts for different amino acids A and B is defined as

$$P_{\rm A-B} = \frac{N_{\rm A-B}}{\sqrt{N_{\rm A}N_{\rm B}}} \tag{1}$$

Here N_{A-B} represents the number of the contacts between residue A and residue B, and N_A and N_B are the total numbers of the residues of type A and B in the 278 protein chains, respectively.

Average number of contacts per residue indicates the ability of forming contacts. Here we define the average

Table 2

Number of residue–residue contacts N_{A-B} for different amino acids A and B. Upper triangle counts the long-range contacts, and lower triangle counts the short-range contacts in protein samples. Here $R_c = 0.80$ nm

	Leu	Val	Ile	Met	Phe	Tyr	Cys	Trp	Ala	Gly	Thr	His	Glu	Gln	Asp	Asn	Lys	Ser	Arg	Pro	
	1862	2128	1542	412	979	742	423	381	1944	1513	1176	329	582	547	653	519	782	1045	530	674	Leu
Leu	1560	2642	1695	398	958	718	494	321	2049	1541	1326	387	713	514	627	511	810	1199	618	685	Val
Val	1113	948	1282	304	717	651	365	254	1522	1066	954	258	487	390	508	410	655	818	462	412	Ile
Ile	909	677	586	146	212	147	114	87	363	367	271	88	151	132	143	134	177	227	155	153	Met
Met	379	242	231	84	452	370	237	181	825	687	636	218	278	280	342	301	350	569	278	332	Phe
Phe	625	512	401	123	370	448	295	222	709	719	516	185	278	291	340	372	460	516	376	376	Tyr
Tyr	573	426	388	163	236	296	996	111	376	578	371	116	181	180	215	188	245	428	153	214	Cys
Cys	291	238	164	67	102	138	160	66	300	300	203	84	104	132	134	141	169	218	170	169	Trp
Trp	256	221	155	51	100	93	52	88	1752	1517	1104	365	616	523	708	642	764	1113	523	729	Ala
Ala	1522	1343	937	352	644	560	321	270	2182	2204	1338	371	642	599	924	763	805	1335	681	825	Gly
Gly	1293	1019	767	245	547	563	348	268	1459	1298	1006	306	486	422	681	579	598	1008	499	623	Thr
Thr	827	729	535	189	390	417	207	179	997	1027	762	168	172	95	254	167	208	286	163	230	His
His	395	319	208	90	189	147	94	72	376	393	222	132	292	217	259	259	542	490	359	323	Glu
Glu	1044	668	598	225	438	377	166	152	1017	732	640	285	714	170	213	221	305	383	215	304	Gln
Gln	759	513	371	143	248	282	134	137	718	559	428	145	444	274	388	436	553	612	398	355	Asp
Asp	946	794	619	269	448	401	173	163	1100	943	634	250	585	452	598	402	365	573	278	337	Asn
Asn	680	528	494	151	302	372	171	161	721	574	552	169	448	344	551	410	442	625	213	344	Lys
Lys	1131	826	677	226	484	379	200	194	1325	961	702	268	947	459	887	542	850	1022	445	509	Ser
Ser	1081	807	675	225	473	487	255	247	1126	1070	908	257	651	536	759	504	712	1104	254	309	Arg
Arg	785	468	449	199	291	320	111	156	687	572	523	182	571	345	522	315	396	486	320	368	Pro
Pro	553	509	355	124	316	287	108	116	571	560	448	174	363	278	437	263	450	547	254	262	
	Leu	Val	Ile	Met	Phe	Tyr	Cys	Trp	Ala	Gly	Thr	His	Glu	Gln	Asp	Asn	Lys	Ser	Arg	Pro	

number of short-range contacts per residue C_S and the average number of long-range contacts per residue C_L as

$$C_{\alpha,\eta} = \frac{\sum_{\beta=Ala,Asp,Cys,Glu,...,Tyr} N_{\alpha,\eta}}{N_{\alpha,\eta}}$$
(2)

$$(\eta = S, or, L; \alpha = Ala, Asp, ..., Tyr)$$

If residue A has a large value of C_L , it means that residue A has a high tendency of forming long-range contacts. These calculations can help us indicate the mechanism of the globular protein folding, and what plays an important role in the protein folding.

3. Results and discussions

3.1. Occurrence of residues in short- and long-range interactions

The numbers of short-range contacts ($N_{\rm S}$) and long-range contacts ($N_{\rm L}$) of all the 20 amino acid residues in a set of 278 globular proteins are listed in Table 1, here two cases of $R_{\rm c} = 0.80$ and 0.65 nm are considered, respectively. These globular proteins are the source for our present study. Some results are almost accord with the Gromiha and Selvaraj's work [22,23]. In our calculation, the total number of globular proteins is 278, and is almost twice as large as Gromiha and Selvaraj's work (150). It shows that $N_{\rm S}$ is greater than $N_{\rm L}$ for 37.8% proteins, $N_{\rm L}$ is greater than $N_{\rm S}$ for 53.2% proteins, and $N_{\rm L}$ is almost the same as $N_{\rm S}$ for 9.0% proteins when $R_{\rm c} = 0.80$ nm. For short proteins with the number of amino acid residues (chain length) N < 100 and long proteins with the number of amino acid residues (chain length) N > 200, the average number of long-range contacts per protein is greater than the average number of short-range contacts per protein. However, the average number of long-range contacts per protein equals to the average number of short-range contacts per protein, for proteins with 200 > N > 100. For example, the ratio of $N_{\rm L}/N_{\rm S}$ is 1.173 for N > 200, and is 0.99 for 200 > N > 100. It implies the long-range contacts have more advantage to attain the stable tertiary structure in protein, and long-range contacts for each amino acid residues are important for maintaining their foldings.

We also calculate the distribution of the short-range and long-range contacts with $R_c = 0.65$ nm, and the results are also given in Table 1. When the radius R_c decreases, both N_S and N_L also decrease, especially for N_L . The percentage of proteins with $N_S > N_L$ increases from 37.8 to 60.8%, the percentage of proteins with $N_L > N_S$ decreases from 53.2 to 36.0%, and the percentage of proteins with $N_L \approx N_S$ decreases from 8.0 to 3.2% when R_c decreases from 0.80 to 0.65 nm. The reason is that the number of long-range contacts depends more strongly on R_c . In the meantime, the average ratio of N_L/N_S become large and the value is 1.312, which is greater than the case of $R_c = 0.80$ nm.

We also investigate the ability to form a residue–residue contact in all the 20 amino acids. The number of residue– residue contacts for different amino acid is listed in Table 2. Here $R_c = 0.80$ nm. Upper triangle counts the long-range contacts, and lower triangle counts the short-range contacts in protein samples. In the upper triangle, the maximum number of the residue-residue contacts is 2642, and it occurs to the Val-Val residue-residue contact. In the other hand, the minimum number is 66, and it occurs to the Trp-Trp residue-residue contacts. Although the number of Trp-Trp long-range contacts is only 66, the average number of long-range contacts per residue pair is not minimum because the total number of Trp amino acid is only 1.56% of all the 20 amino acids in 278 protein molecules. Contrast to the lower triangle, the maximum and minimum numbers of short-range contacts is 2182 and 51, respectively, and they exist in the Ala-Ala and Trp-Met residue-residue contacts, respectively. This shows it is important that the probability distribution of the amino acids and the number of contacts are considered simultaneously.

3.2. Preference of amino acid residues in the short- and long-range contacts

It is difficult to conclude which of two residues easy to form a contact only from Table 2 because the percentage of the amino acids is different in all the 20 amino acids. We count all the 20 amino acids and there have 52,667 residues in the 278 different globular proteins. The probability distribution of the amino acids is shown in Fig. 1. In Fig. 1, the Ala amino acid occupies the maximal proportion 8.62% in all the 20 amino acids. The minimum is 1.56%, and this is the Trp amino acid. Those results can help us know distributions of the amino acids clearly. We use the average number P_{A-B} of residue-residue contacts for different amino acids A and B to scale the ability of forming the contacts. Considering the same contacts between A-B and B-A, we only show the results of A-B contact in Tables 3 and 4. Table 3 is the case of $R_c = 0.80$ nm, and we find that Cys-Cys has the largest value of average number of longrange contacts. Val-Val, Val-Leu, Ile-Val, and Ala-Val also

Fig. 1. The probability of different amino acid residues in all the 20 amino acid obtained from 278 globular proteins. Here L,V,...,R, and P represent amino acids in one letter symbol

have the high value of long-range contacts, and the values are greater than 0.50. The 10 topmost long-range contacts are Cys-Cys, Val-Val, Val-Leu, Ile-Val, Ala-Val, Gly-Gly, Ile-Ile, Ile-Leu, Leu-Leu, and Ala-Ile. Our results agree well with the Gromiha and Selvaraj's work [22,23]. Those residue pairs have the higher tendency of forming longrange contacts. Without these long-range contacts, it is difficult to become globular proteins. On the other hand, the minimum is Gln-His contact, and the average number of long-range contacts P_{A-B} of Gln-His contact is 0.064, and Glu-Trp, Arg-Lys, Asp-Met, Asp-Trp, His-Met, His-Trp, Asp-Glu, Asp-Gln, Gln-Gln, Glu-Met, Gln-Glu, Glu-His, Gln-Met, Trp-Met contacts are all less than 0.1. It shows that Cys-Cys is the easiest one to form the long-range contact and Gln-His is the more difficulty to form the longrange contact. In other words, the Cys-Cys, Val-Val, Ile-Val, Val-Leu and Ala-Val contacts play an important role on the protein folding.

We also discuss the short-range contacts, and the results are given in Table 3. The average number of short-range contacts P_{A-B} ranges from 0.058 to 0.487. Except Ala-Ala Leu-Leu, Ala-Leu, Lys-Ala, Ala-Val and Gly-Ala shortrange contacts, most of them have a value 0.1–0.3. We think that forming a short-range contact depends mainly on the sequence of amino acids. If the amino acid has a large probability in all the 20 amino acids, it may have a possible large value of the short-range contacts.

We also calculate the average number P_{A-B} of residueresidue contacts for different amino acids with $R_c = 0.65$ nm, and the results are given in Table 4. We find that although the values of the number of long-range contacts and short-range contacts become small, the 10 topmost long-range contacts are the same as the case of $R_c = 0.80$ nm. Therefore, the relative ability to form a residue-residue contact does not depend on the value of R_c .

Considering the single residue, we calculate the average number of short-range contacts per residue $C_{\rm S}$ and the average number of long-range contacts per residue $C_{\rm L}$ according to Eq. (2), and the results are given in Table 5. Here we discussed the contact numbers of per residue for all the 20 amino acids with $R_c = 0.80$ and 0.65 nm. In $R_{\rm c} = 0.80$ nm condition, we obtain that the Cys amino acid has the largest value of the average number of longrange contacts, and the Glu amino acid has the smallest one. We also find that the amino acid of Leu, Val, Ile, Met, Phe, Tyr, Cys, and Trp has a large value of $C_{\rm L}$, and the amino acid of Glu, Gln, Asp, Asn, Lys, Ser, Arg, and Pro has a small value of C_{I} . Our results agree well with previous calculations [10,11]. In our another paper, we concluded that all the 20 residues can be classified into three groups: hydrophobic residues (H) consisting of Phe, Met, Ile, Leu, Trp, Val, Cys, and Tyr; neutral residues (N) consisting of His, Ala, Gly, and Thr; and hydrophilic residues (P) consisting of Lys, Asp, Asn, Glu, Gln, Ser, Pro, and Arg [11]. If one is the hydrophobic residue, it must have a large value of the average number of long-range contacts per

6042

Table 3
Average number P _{A-B} of residue – residue contacts for different amino acids A and B. Upper triangle counts the long-range contacts and lower triangle counts the short-range contacts in protein samples. Here
$R_{\rm c}=0.80~{ m nm}$

	Leu	Val	Ile	Met	Phe	Tyr	Cys	Trp	Ala	Gly	Thr	His	Glu	Gln	Asp	Asn	Lys	Ser	Arg	Pro	
	0.421	0.528	0.442	0.201	0.334	0.257	0.202	0.202	0.437	0.343	0.308	0.147	0.165	0.188	0.178	0.164	0.206	0.261	0.176	0.217	Leu
Leu	0.358	0.719	0.532	0.213	0.358	0.273	0.258	0.186	0.505	0.383	0.381	0.190	0.222	0.193	0.187	0.177	0.234	0.328	0.225	0.242	Val S
Val	0.276	0.258	0.465	0.188	0.309	0.286	0.220	0.170	0.433	0.305	0.316	0.146	0.175	0.169	0.175	0.164	0.219	0.259	0.194	0.168	Ile a
Ile	0.260	0.213	0.212	0.153	0.156	0.110	0.117	0.099	0.176	0.179	0.153	0.085	0.092	0.098	0.084	0.091	0.101	0.122	0.111	0.106	Met %
Met	0.185	0.129	0.143	0.088	0.232	0.193	0.170	0.144	0.279	0.234	0.251	0.147	0.119	0.145	0.140	0.143	0.139	0.214	0.139	0.161	Phe a
Phe	0.213	0.191	0.173	0.090	0.190	0.238	0.216	0.180	0.244	0.249	0.207	0.127	0.121	0.153	0.142	0.180	0.186	0.197	0.191	0.186	Tyr :
Tyr	0.199	0.162	0.170	0.122	0.123	0.157	1.001	0.124	0.178	0.276	0.205	0.109	0.108	0.130	0.123	0.125	0.136	0.225	0.107	0.145	Cys 3
Cys	0.139	0.124	0.099	0.069	0.073	0.101	0.161	0.082	0.158	0.159	0.124	0.088	0.069	0.106	0.085	0.104	0.104	0.127	0.132	0.127	Trp S
Trp	0.135	0.128	0.104	0.058	0.080	0.075	0.058	0.109	0.391	0.341	0.287	0.162	0.173	0.178	0.191	0.201	0.200	0.276	0.172	0.233	Ala 💐
Ala	0.342	0.331	0.266	0.170	0.218	0.193	0.152	0.142	0.487	0.499	0.351	0.166	0.182	0.206	0.251	0.241	0.212	0.334	0.226	0.266	Gly 🐉
Gly	0.293	0.253	0.220	0.120	0.187	0.195	0.166	0.142	0.328	0.294	0.305	0.158	0.160	0.168	0.214	0.211	0.183	0.291	0.191	0.232	Thr E
Thr	0.217	0.209	0.177	0.107	0.154	0.167	0.114	0.110	0.259	0.269	0.231	0.148	0.096	0.064	0.136	0.104	0.108	0.141	0.107	0.146	His S
His	0.176	0.156	0.118	0.087	0.127	0.101	0.088	0.076	0.167	0.176	0.115	0.116	0.104	0.093	0.088	0.102	0.179	0.153	0.149	0.130	Glu
Glu	0.296	0.208	0.215	0.137	0.187	0.164	0.099	0.101	0.286	0.208	0.210	0.160	0.254	0.089	0.088	0.106	0.122	0.145	0.108	0.149	Gln S
Gln	0.261	0.193	0.161	0.106	0.128	0.148	0.097	0.110	0.245	0.192	0.170	0.098	0.191	0.143	0.127	0.165	0.175	0.184	0.159	0.137	Asp 🛓
Asp	0.257	0.237	0.213	0.158	0.184	0.167	0.099	0.104	0.297	0.257	0.200	0.134	0.199	0.187	0.195	0.177	0.134	0.199	0.128	0.151	Asn 4
Asn	0.215	0.183	0.197	0.103	0.144	0.180	0.114	0.119	0.226	0.181	0.202	0.105	0.177	0.165	0.209	0.180	0.136	0.182	0.082	0.129	Lys
Lys	0.298	0.239	0.226	0.128	0.192	0.153	0.111	0.120	0.347	0.254	0.214	0.140	0.313	0.184	0.281	0.199	0.261	0.282	0.163	0.181	Ser
Ser	0.270	0.221	0.213	0.121	0.178	0.186	0.134	0.144	0.279	0.267	0.262	0.127	0.204	0.203	0.228	0.175	0.207	0.304	0.123	0.146	Arg
Arg	0.260	0.170	0.188	0.142	0.145	0.162	0.078	0.121	0.226	0.190	0.201	0.119	0.237	0.173	0.208	0.146	0.153	0.178	0.155	0.169	Pro
Pro	0.178	0.180	0.145	0.086	0.153	0.142	0.073	0.087	0.183	0.181	0.167	0.111	0.147	0.136	0.169	0.118	0.169	0.194	0.120	0.120	
	Leu	Val	Ile	Met	Phe	Tyr	Cys	Trp	Ala	Gly	Thr	His	Glu	Gln	Asp	Asn	Lys	Ser	Arg	Pro	

Table 4
Average number P _{A-B} of residue-residue contacts for different amino acids A and B. Upper triangle counts the long-range contacts and lower triangle counts the short-range contracts in protein samples. Here

 $R_{\rm c} = 0.65 \,\rm nm$

	Leu	Val	Ile	Met	Phe	Tyr	Cys	Trp	Ala	Gly	Thr	His	Glu	Gln	Asp	Asn	Lys	Ser	Arg	Pro		
	0.200	0.249	0.204	0.091	0.157	0.122	0.110	0.096	0.214	0.195	0.165	0.066	0.083	0.093	0.083	0.076	0.096	0.129	0.085	0.093	Leu	
Leu	0.350	0.377	0.276	0.117	0.181	0.137	0.138	0.089	0.256	0.226	0.209	0.096	0.122	0.105	0.108	0.084	0.118	0.189	0.116	0.117	Val	N
Val	0.217	0.179	0.218	0.083	0.163	0.148	0.109	0.078	0.213	0.154	0.161	0.063	0.095	0.091	0.094	0.081	0.110	0.138	0.092	0.079	Ile	liat
Ile	0.226	0.152	0.162	0.055	0.090	0.057	0.053	0.044	0.090	0.088	0.077	0.045	0.046	0.048	0.041	0.048	0.043	0.065	0.071	0.043	Met	81
Met	0.171	0.106	0.103	0.071	0.136	0.102	0.091	0.067	0.137	0.129	0.133	0.067	0.065	0.066	0.065	0.078	0.074	0.124	0.063	0.067	Phe	et c
Phe	0.191	0.129	0.125	0.079	0.149	0.144	0.127	0.093	0.128	0.139	0.111	0.051	0.053	0.079	0.072	0.103	0.096	0.107	0.093	0.080	Tyr	<i>d.</i> /
Tyr	0.163	0.112	0.119	0.095	0.093	0.105	0.678	0.079	0.088	0.138	0.123	0.075	0.044	0.071	0.065	0.067	0.064	0.123	0.048	0.086	Cys	Pc
Cys	0.093	0.081	0.077	0.050	0.055	0.053	0.166	0.042	0.082	0.083	0.064	0.047	0.044	0.044	0.043	0.051	0.063	0.078	0.079	0.055	Trp	olyn
Trp	0.110	0.090	0.071	0.043	0.062	0.066	0.038	0.086	0.229	0.175	0.150	0.077	0.086	0.085	0.098	0.103	0.104	0.151	0.089	0.110	Ala	ner
Ala	0.283	0.240	0.196	0.146	0.169	0.153	0.102	0.109	0.418	0.275	0.208	0.088	0.077	0.113	0.130	0.124	0.097	0.174	0.116	0.138	Gly	43
Gly	0.218	0.174	0.150	0.092	0.114	0.133	0.114	0.097	0.241	0.216	0.163	0.101	0.083	0.089	0.099	0.115	0.107	0.163	0.104	0.110	Thr	2
Thr	0.159	0.131	0.128	0.087	0.101	0.110	0.089	0.073	0.193	0.155	0.141	0.095	0.054	0.030	0.062	0.047	0.060	0.071	0.061	0.052	His	00
His	0.138	0.109	0.087	0.075	0.086	0.075	0.079	0.044	0.112	0.098	0.086	0.101	0.045	0.037	0.044	0.047	0.099	0.078	0.072	0.064	Glu	6
Glu	0.240	0.149	0.145	0.100	0.136	0.120	0.064	0.077	0.242	0.149	0.162	0.109	0.184	0.049	0.041	0.049	0.054	0.076	0.057	0.066	Gln	20
Gln	0.208	0.133	0.112	0.080	0.073	0.089	0.051	0.103	0.217	0.128	0.113	0.078	0.165	0.122	0.061	0.085	0.075	0.094	0.075	0.068	Asp	7
Asp	0.188	0.149	0.139	0.113	0.134	0.116	0.075	0.070	0.231	0.194	0.137	0.100	0.159	0.147	0.155	0.082	0.071	0.113	0.066	0.057	Asn	Q4
Asn	0.153	0.112	0.138	0.073	0.095	0.119	0.086	0.094	0.183	0.129	0.147	0.077	0.132	0.128	0.164	0.140	0.071	0.097	0.047	0.057	Lys	7
Lys	0.224	0.177	0.156	0.114	0.142	0.118	0.070	0.092	0.261	0.177	0.156	0.098	0.275	0.150	0.244	0.146	0.206	0.153	0.091	0.057	Ser	
Ser	0.191	0.161	0.133	0.084	0.123	0.118	0.081	0.093	0.213	0.177	0.155	0.101	0.153	0.153	0.169	0.136	0.144	0.182	0.061	0.057	Arg	
Arg	0.207	0.137	0.132	0.098	0.101	0.116	0.054	0.081	0.188	0.131	0.142	0.095	0.197	0.142	0.174	0.109	0.112	0.120	0.132	0.057	Pro	
Pro	0.123	0.110	0.088	0.061	0.090	0.074	0.042	0.060	0.133	0.085	0.094	0.068	0.101	0.099	0.086	0.069	0.126	0.096	0.072	0.057		
	Leu	Val	Ile	Met	Phe	Tyr	Cys	Trp	Ala	Gly	Thr	His	Glu	Gln	Asp	Asn	Lys	Ser	Arg	Pro		

			$R_{\rm c} = 0.8$	30 nm			$R_{\rm c}=0.6$	65 nm		
20 Amino acids	Three types of amino acids	P (%)	Cs	\bar{C}_{S}	$C_{\rm L}$	$\bar{C}_{\rm L}$	Cs	\bar{C}_{S}	$C_{ m L}$	\bar{C}_{L}
Leu	Hydrophobic (H)	8.05	3.995	3.717	4.484	5.008	2.913	2.674	1.999	2.579
Val		7.07	3.510		5.533		2.433		2.877	
Ile		5.31	3.696		5.347		2.599		2.669	
Met		1.75	3.968		4.392		3.060		2.150	
Phe		3.75	3.718		4.726		2.653		2.460	
Tyr		3.62	3.667		4.637		2.562		2.441	
Cys		1.92	3.518		6.312		2.362		3.586	
Trp		1.56	3.870		4.632		2.806		2.446	
Ala	Neutral (N)	8.72	4.068	3.649	4.068	4.068	3.189	2.671	2.102	2.159
Gly		8.70	3.364		4.153		2.349		2.271	
Thr		6.58	3.311		4.126		2.299		2.310	
His		2.18	3.851		3.924		2.847		1.954	
Glu	Hydrophilic (P)	5.42	3.931	3.721	2.640	3.232	3.031	2.721	1.290	1.610
Gln		3.70	3.942		3.194		3.008		1.571	
Asp		5.89	3.770		2.858		2.813		1.401	
Asn		4.38	3.629		3.341		2.658		1.683	
Lys		6.26	3.881		2.895		2.938		1.452	
Ser		6.98	3.557		3.698		2.438		1.967	
Arg		3.97	3.858		3.435		2.897		1.753	
Pro		4.20	3.200		3.794		1.982		1.761	

Average number of contacts per residue. $C_S(C_L)$ is the average number of short-range (long-range) contacts per residue. *P* is the probability of the residue in all 20 amino acids, and $\bar{C}_S(\bar{C}_L)$ is the average of $C_S(C_L)$

residue. Which one is the hydrophobic residue or not depends on the average number of long-range contacts per residue. If there are not any long-range contacts, it cannot form the globular protein structure. Of course, the attraction interactions between atoms lead to form long-range residue–residue contacts. We also calculate the average number (\bar{C}_L of long-range contacts per hydrophobic residue (H), or per neutral residue (N), or per hydrophilic residue (P). Here \bar{C}_L is defined as

Table 5

$$\bar{C}_{L} = \frac{\sum_{\alpha=\text{Leu,Val,...,Trp; or Ala,...His; or, Glu,Gln,...,Pro}}{m}$$

$$\begin{pmatrix} \alpha = \text{Leu,Val,...,Trp} & m = 8 \\ \alpha = \text{Ala,Gly,...,His} & m = 4 \\ \alpha = \text{Glu,Gln,...,Pro} & m = 8 \end{pmatrix}$$
(3)

The results are given in Table 5 and Fig. 2. In Fig. 2, we find that $\bar{C}_{\rm L}$ of hydrophobic residue, neutral residue, and hydrophilic residue is 5.008, 4.068, and 3.232, respectively. We also discuss the case of $R_{\rm c} = 0.65$ nm, and similar results are obtained.

In order to study whether the long-range contact or the short-range contact plays an important in protein folding, we calculate the average number C_S of short-range contacts per residue. The results are given in Table 5. We observe that the Ala residue has the largest value of the short-range contacts, and the Pro residue has the smallest one. However, the difference of two values is small. The important result is that C_S ranges from 3.5 to 4.0 for 80% of all the 20 amino acids, and the average numbers of short-range contacts per

residue of hydrophobic, neutral, and hydrophilic residues are almost the same. This means that hydrophobic residue plays an equally important role in forming short-range contacts, which is different from the forming of long-range contacts. When R_c decreases, the average numbers of shortrange contacts and long-range contacts per residue also decrease, see Table 5. However, the residues with the maximum and the minimum of C_L and C_S are the same, and relative position of all the 20 amino acids unchange (see Table 5). It is worthy of considering the average of C_L and C_S for three types of amino acids, i.e. hydrophobic, neutral, and hydrophilic residues. The results are shown in Fig. 2. The obvious distinguish between \overline{C}_L and \overline{C}_S is that \overline{C}_L has

Fig. 2. Average number of contacts per residue. Here H, N, and P represent hydrophobic, neutral, and hydrophilic residues, respectively. $\bar{C}_S(\bar{C}_L)$ is the average number of short-range (long-range) contacts per residue. R_c is the limiting value of $C^{\alpha} - C^{\alpha}$ atoms forming a contact.

Table 6 The average distance of residue–residue contacts with $R_c = 0.80$ nm in unit of average length of protein chain \bar{N} . Here $\bar{N} = 189.45$

Leu	Val	Ile	Met	Phe	Tyr	Cys	Trp	Ala	Gly	Thr	His	Glu	Gln	Asp	Asn	Lys	Ser	Arg	Pro		
Leu 0.283	Val 0.264 0.255	Пе 0.288 0.254 0.284	Met 0.285 0.261 0.314 0.244	Phe 0.286 0.278 0.287 0.292 0.261	Tyr 0.258 0.250 0.243 0.282 0.247 0.256	Cys 0.246 0.265 0.249 0.230 0.221 0.171 0.179	Trp 0.240 0.224 0.268 0.221 0.271 0.247 0.245 0.279	Ala 0.322 0.287 0.326 0.269 0.302 0.279 0.264 0.282 0.325	Gly 0.304 0.283 0.291 0.292 0.294 0.253 0.281 0.320 0.332 0.337	Thr 0.295 0.261 0.279 0.304 0.261 0.244 0.227 0.242 0.300 0.291 0.252	His 0.249 0.304 0.287 0.294 0.288 0.236 0.183 0.246 0.270 0.314 0.278 0.210	Glu 0.264 0.237 0.230 0.239 0.277 0.268 0.250 0.195 0.283 0.262 0.291 0.250 0.254	Gln 0.306 0.233 0.234 0.285 0.229 0.235 0.195 0.288 0.273 0.280 0.259 0.253 0.262 0.258	Asp 0.279 0.295 0.259 0.271 0.326 0.227 0.256 0.220 0.280 0.283 0.304 0.245 0.287 0.288 0.352	Asn 0.279 0.263 0.255 0.354 0.284 0.228 0.196 0.270 0.283 0.294 0.235 0.271 0.259 0.250 0.246 0.251	Lys 0.272 0.229 0.270 0.229 0.248 0.256 0.240 0.198 0.273 0.270 0.227 0.223 0.208 0.226 0.264 0.253 0.230	Ser 0.300 0.279 0.280 0.267 0.207 0.239 0.245 0.321 0.307 0.278 0.238 0.267 0.270 0.269 0.297 0.254 0.258	Arg 0.271 0.266 0.294 0.271 0.280 0.252 0.303 0.241 0.319 0.325 0.274 0.288 0.293 0.247 0.313 0.289 0.282 0.308 0.380	Pro 0.278 0.280 0.274 0.255 0.282 0.233 0.225 0.210 0.286 0.316 0.318 0.296 0.291 0.327	Leu Val Ile Met Phe Tyr Cys Trp Ala Gly Thr His Glu Gln Asp Asp Lys Ser Arg	Z. Jiang et al. / Polymer 43 (2002) 6037–6047
																		0.000	0.286	Pro	

6047

the tendency to a decrease with the amino type from H to P, while the change of \overline{C}_S without this disciplinarian. It clearly indicates that the H type of the residue has higher tendency to forming the long-range contacts. From the point of view of chemic quality, these residues have the higher tendency of forming hydrophobic clusters and disulfide bridges due to long-range contacts. But in the short-range interactions, the amino acid's effect mostly relates to the coordinate regardless what type they are. The value of \overline{C}_L proves that dividing the amino acids into three types is valid [10,11].

3.3. The average distance of each amino acid

After we know what amino acid has the preference to effect the contacts, we consider the action range of the 20 amino acids. Here *distance* means residues interval between the contacts pairs. The results are shown in Table 6. Here the average distance of amino acid action range is in the unit of the average length of protein, \bar{N} . The reason is that the average distance of action range is relative and depends on the size of protein. The longest distance is 0.380 \bar{N} , which occurs on Arg-Arg residue–residue contact and the shortest one is 0.171 \bar{N} , which occurs on Cys-Tyr residue–residue contact. The average distance ranges from 0.25 \bar{N} to 0.30 \bar{N} in general, and the difference is small. This investigation may help to improve the secondary structure predictions and provide some insights into the protein folding.

Acknowledgements

This research was financially supported by NSFC (Nos. 29874012 and 20174036), Natural Science Foundation of Zhejiang Province (No. 10102) and the Special Funds for Major State Basic Research Projects (G1999064800). We

also thank the referees for their critical reading of the manuscript and their good ideas.

References

- Branden C, Tooze J. Introduction to protein structure. New York: Garland; 1991.
- [2] Creighton TE. Proteins: structures and molecular properties. New York: Freeman; 1983.
- [3] Fletterick RJ, Schroer T, Matela RJ. Molecular structure: macromolecular in three dimensions. Oxford: Blackwell Scientific; 1985.
- [4] Kamtekar S, Schiffer JM, Xiongm H, Babik JM, Hecht MH. Science 1993;262:1680-5.
- [5] Lau KF, Dill KA. Macromolecules 1989;22:3986-97.
- [6] Dill KA, Bromberg S, Yue K, Fiebig KM, Yee KM, Thomas PD, Chan HS. Protein Sci 1995;4:561–602.
- [7] Yue K, Fiebig KM, Thomas PD, Chan HS, Shackhnovich EI, Dill KA. Proc Natl Acad Sci USA 1995;92:325–9.
- [8] Regan L, DeGrado WF. Science 1988;241:976-9.
- [9] Miyazawa S, Jernigan RL. J Mol Biol 1996;256:623-44.
- [10] Miyazawa S, Jernigan RL. Macromolecules 1985;18:543-52.
- [11] Linxi Z, Delu Z. Submitted for publication.
- [12] Crippen GM. Biopolymers 1977;16:2189-96.
- [13] Miyazawa S, Jernigan RL. Biopolymers 1982;21:1333-63.
- [14] Jernigan RL, Miyazawa S. Biopolymers 1983;22:79-85.
- [15] Manavalan P, Ponnuswamy PK. Arch Biochem Biophys 1977;184: 476–87.
- [16] Manavalan P, Ponnuswamy PK. Nature 1978;275:673-4.
- [17] Ponnuswamy PK. Prog Biophys Mol Biol 1993;59:57-103.
- [18] Gromiha MM, Selvaraj S. Recent Res Dev Biophys Chem 2000;1: 1-14.
- [19] Debe DA, Goddard WA. J Mol Biol 1999;294:619-27.
- [20] Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A. Protein Eng 1999;12:549–55.
- [21] Gromiha MM. Biophys Chem 2001;91:71-7.
- [22] Gromiha MM, Selvaraj S. Biophys Chem 1999;77:49-68.
- [23] Gromiha MM, Selvaraj S. Int J Biol Macromol 2001;29:25-34.
- [24] Flory PJ. Statistical mechanics of chain molecules. New York: Wiley; 1969.